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  Abstract  

 
 

Wavelet transforms or wavelet analysis is a recently developed 

mathematical tool for many problems. Wavelets also can be applied in 

numerical analysis. In this article, we present a Laguerre wavelet based 

numerical method for the solution of differential equations. The 

proposed technique utilizes the Laguerre wavelets basis in conjunction 

with collocation technique. The Laguerre wavelets basis are derived 

and utilized for the solution of some typical ordinary differential 

equations. Convergence analysis for the proposed technique has also 

been given. Numerical examples are provided to illustrate the 

efficiency and accuracy of the technique. The results show that the 

proposed way are quite reasonable when compare to exact solution. 
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1. Introduction 

Differential equations have several applications in several fields such as: physics, fluid dynamics and 

geophysics etc. However it is not always possible to get the solution in closed form and thus, numerical methods 

come into the picture. 

There are several numerical methods to handle a variety of problems: Finite Difference Method, Spectral 

Method, Finite Element Method, Finite Volume Method and so on. Many researchers are involved in 

developing various numerical schemes for finding solutions of different problems [3-5,12-14,17-19,22,23,25-

27,34-36]. 

Wavelets theory is a newly emerging area in science and engineering. It has been applied in engineering 

disciplines; such as signal analysis for wave form representation and segmentations, time frequency analysis, 

harmonic analysis etc. Wavelets permit the accurate representation of a variety of functions and operators. 

Moreover, wavelets establish a connection with fast numerical algorithms. Spectral methods play prominent 

roles in solving various kinds of differential equations. It is known that there are three most widely used spectral 

methods, such as tau, collocation, and Galerkin methods. Collocation methods have become increasingly 

popular for solving differential equations; in particular, they are very useful in providing highly accurate 

solutions to differential equations. 

In the recent years the wavelet approach is becoming more popular in the field of numerical approximations. 

Different types of wavelets and approximating functions have been used for this purpose. The examples include 

Daubechies [11], Battle-Lemarie [38], B-spline [10], Chebyshev [1], Legendre [2, 28] and Haar wavelets 

[33,32,21,9], etc. On account of their simplicity, Haar wavelets have received the attention of many researchers. 
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A short introduction to the Haar wavelets and its applications can be found in [16,15,20,7-8, 29-31]. Laguerre 

wavelets, which are another type of wavelets, use Laguerre polynomials as their basis functions. They have 

good interpolating properties and give better accuracy for smaller number of collocation points. Applications 

of Laguerre wavelets for numerical approximations can be found in the references [37,24]. The basic 

motivation of this paper is to develop a Laguerre Wavelets Method (LWM) to solve certain differential 

equations. It is observed that proposed method is fully compatible with the complexity of such problems and 

is very user-friendly. The error estimates explicitly reveal the very high accuracy level of the suggested 

technique. 

The rest of this paper is organized as follows. In Section 2, we discuss the properties of Laguerre wavelets. The 

error estimation of the Laguerre wavelets expansion is also given. In Section 3, Laguerre wavelets method of 

solution is given. Section 4 gives several examples to test the proposed method. A conclusion is drawn in 

Section 5. 

2. Properties of Laguerre Wavelets 

Wavelets constitute a family of functions constructed from dilation and translation of a single function called 

the mother wavelet. When the dilation parameter a and the translation parameter b varies continuously, families 

of continuous wavelets are, 

𝜓𝑎,𝑏(𝑥) = |𝑎|
−1

2  𝜓 (
𝑥 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

If we restrict the parameters a and b to discrete values as 𝑎 = 𝑎0
−𝑘 , 𝑏 = 𝑛𝑏0𝑎0

−𝑘, 𝑎0 > 1, 𝑏0 > 0,  family of 

discrete wavelets are,  

𝜓𝑘,𝑛(𝑥) = |𝑎0|
1

2 𝜓(𝑎0
𝑘𝑥 − 𝑛𝑏0) 

Where 𝜓𝑘,𝑛 forms a wavelet basis for 𝐿2(𝑅). In particular, when 𝑎0 = 2 𝑎𝑛𝑑 𝑏0 = 1, then 𝜓𝑘,𝑛(𝑥)  forms an 

orthonormal basis.  

Laguerre Wavelets: The Laguerre wavelets𝜓𝑛,𝑚(𝑥) =  𝜓(𝑘, 𝑛, 𝑚, 𝑥) involve four arguments n =1, 2, 

3,...,2𝑘−1, k is assumed any positive integer, m is the degree of the Laguerre polynomials and it is the normalized 

time. They are defined on the interval [0, 1) as,  

                         𝜓𝑛,𝑚(𝑥) = {2
𝑘

2𝐿̅𝑚(2𝑘𝑥 − 2𝑛 + 1),   
𝑛−1

2𝑘−1 ≤ 𝑥 <
𝑛

2𝑘−1

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
                                                         (2.1) 

Where, 

                                      𝐿̅𝑚(𝑥) =
1

𝑚!
𝐿𝑚(𝑥)                                                                                                   (2.2) 

m = 0, 1, 2... M-1. In eq. (2.2) the coefficients are used for orthonormality. Here 𝐿𝑚(𝑥) are the Laguerre 

polynomials of degree m with respect to the weight function w(x) =1 on the interval [0, ∞] and satisfy the 

following recursive formula, 𝐿0(𝑥) = 1,   𝐿1(𝑥) = 1 − 𝑥 , 

               𝐿𝑚+2(𝑥) =
(2𝑚+3−𝑥)𝐿𝑚+1(𝑥)−(𝑚+1)𝐿𝑚(𝑥)

𝑚+2
, 𝑚 = 0,1,2,3, …., 

 

 

 

 

2

2

3 2

3

4 3
2

4

5 4 3
2

5

2 1.
2

3 3 1.
6 2

2 3 4 1.
24 3

5 5 5 5 1.
120 24 3

x
L x x

x x
L x x

x x
L x x x

x x x
L x x x

  

   

    

      

   

 

 

 

6 5 4 3
2

6

7
6 5 4 3 2

7

8 7
6 5 4 3 2

8

15
5 10 6 1.

720 20 8 3 2

7 7 35 35 21
7 1.

5040 720 40 24 6 2

7 7 35 28
14 8 1.

40320 630 180 15 12 3

x x x x
L x x x

x
L x x x x x x x

x x
L x x x x x x x

      

        

        
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 

 

9 8 7
6 5 4 3 2

9

10 9 8 7
6 5 4 3 2

10

7 21 21
14 18 9 1.

36288 4480 140 60 20 4

7 21 35 45
20 10 1.

3628800 36288 896 42 60 20 4 2

x x x
L x x x x x x x

x x x x
L x x x x x x x

          

          

 
11

10 9 8 7 6

11

5 4 3 2

11 11 11 11 77
.

39916800 3628800 72576 2688 168 120

77 55 55 55
11 1.

20 4 3 2

x
L x x x x x x

x x x x x

      

     

    

 

 

12 11
10 9 8

12

7 6 5 4 3 2

13
12 11 10 9 8 7

13

11 11 11

479001600 3326400 664800 18144 896

11 77 33 165 110
33 12 1.

70 60 5 8 3

13 13 143 143 143 143

6227020800 479001600 6652800 1814400 72576 4480 420

143

6

x x
L x x x x

x x x x x x x

x
L x x x x x x x

    

       

       

 6 5 4 3 2429 715 143
39 13 1.

0 40 24 3
x x x x x x     

 

Laguerre wavelets at k = 1, n = 1: 

1 0, 2 
.
 

 1 1, 2 2 1 x  
.
 

 2

1 2

2
, 4 12 7

4
x x   

.

 

3 2

1 3

1 2
, * [ 4 24 39 17]

3! 3
x x x     

. 

4 3 2

1 4

2 2 20 73 209
, [ 21 ]

4! 3 3 3 24
x x x x     

. 

5 4 3 2

1 5

2 4 62 136 167 773
, [ 4 ]

5! 15 3 3 4 60
x x x x x      

.

 6 5 4 3 2

1 6

2 4 28 43 458 1045 4051 13327
, [ ]

6! 45 15 3 9 12 60 720
x x x x x x       

.

 7 6 5 4 3 2

1 7

2 8 32 38 358 1961 773 37633 65461
, [ ]

7! 315 45 5 9 18 5 360 2520
x x x x x x x        

.

 

Function approximation: A function 𝑦(𝑥) defined over [0, 1) can be expanded as a Laguerre wavelet series 

as follows: 

                                                              𝑦(𝑥) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)∞
𝑚=0

∞
𝑛=1                                                      (2.3)   

where  𝜓𝑛,𝑚(𝑥) is given by the equation (2.1). We approximate y(x) by truncated series,                      

 𝑦(𝑥) ≈ ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥) = 𝐶𝑇ψ(x)𝑀−1
𝑚=0

2𝑘−1

𝑛=1  
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where C and ψ(x) are 2k−1M × 1 matrices given by 

𝐶𝑇 =    [𝐶1,0, . . . , 𝐶1,𝑀−1,𝐶2,0, … , 𝐶2,𝑀−1, … , 𝐶2𝑘−1,0, … , 𝐶2𝑘−1,𝑀−1 ]. 

ψ(x) = [𝜓1,0, … , 𝜓1,𝑀−1,𝜓2,0, … , 𝜓2,𝑀−1, … , 𝜓2𝑘−1,0, … , 𝜓2𝑘−1,𝑀−1]. 

 

Since the truncated wavelets series can be an approximate solution of differential equations one has an error 

function E(x) for 𝑦(𝑥) as follows:                   

E(x) = |𝑦(𝑥) − 𝐶𝑇ψ(x)|. 
Convergence analysis: The following statements give the error estimation of the Laguerre wavelets 

expansion. 

(i) If )(2 xL  is a vector space generated by any polynomial wavelet bases over F and ][xF  is  

      Polynomial vector space over 𝐹 then ][xF  is isomorphic to )(2 xL . 

(ii)The series solution  𝑦(𝑥) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)∞
𝑚=0

∞
𝑛=1   defined in Eq. (2.3) using Laguerre 

      wavelet method is converges to 𝑦(𝑥). 
(iii) Laguerre wavelets { 𝛹𝑖,𝑗} are uniformly continuous on interval I and then they are 

       continuous. 

(iv) If  𝛹𝑖,𝑗: 𝐼 → 𝑅 is uniformly continuous on subset I of R and {𝑥𝑛} is a Cauchy sequence 

       in I then   { 𝛹𝑖,𝑗(𝑥𝑛)} is Cauchy sequence in R. (where  𝛹𝑖,𝑗   is a Laguerre wavelets). 

(iv) Suppose that y(x) = Cm[0,1] and CTψ(x) is the approximate solution using Laguerre  

       wavelets. Then the error bound is,  

||E(x)|| ≤ ||
2

m! 4m2m(k−1)
max

x∈[0,1]
|ym(x)| ||. 

 

3. Laguerre Wavelets method of solution 

Solution of the given differential equation can be expanded as Laguerre wavelet is as follows: 

𝑦(𝑥) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)

∞

𝑚=0

∞

𝑛=1

 

Where 𝜓𝑛,𝑚(𝑥) is given by the equation (2.1). We approximate y(x) by truncated series          

 𝑦𝑘,𝑀(𝑥) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥) = 𝐶𝑇ψ(x) 𝑀−1
𝑚=0

2𝑘−1

𝑛=1                                                                             (3.1) 

Where,          𝐶𝑇 =    [𝐶1,0, . . . , 𝐶1,𝑀−1,𝐶2,0, … , 𝐶2,𝑀−1, … , 𝐶2𝑘−1,0, … , 𝐶2𝑘−1,𝑀−1 ]. 

ψ(x) = [𝜓1,0, … , 𝜓1,𝑀−1,𝜓2,0, … , 𝜓2,𝑀−1, … , 𝜓2𝑘−1,0, … , 𝜓2𝑘−1,𝑀−1]. 

Then a total number of  2𝑘−1𝑀 conditions should exist to determine the 2𝑘−1𝑀 coefficients   
   𝐶10, 𝐶11, , . . . , 𝐶1𝑀−1,𝐶20, 𝐶21, … , 𝐶2𝑀−1, … , 𝐶2𝑘−10, 𝐶2𝑘−11, … , 𝐶2𝑘−1𝑀−1 . 

Suppose, the given differential equation is of second order and it has two conditions are furnished by the initial 

conditions, namely 

                                {
𝑦𝑘,𝑀(0) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(0) = 𝐴𝑀−1

𝑚=0
2𝑘−1

𝑛=1
𝑑

𝑑𝑥
𝑦𝑘,𝑀(0) =

𝑑

𝑑𝑥
∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(0)𝑀−1

𝑚=0
2𝑘−1

𝑛=1 = 𝐵
                                                           (3.2) 

We see that there should be 2𝑘−1𝑀 − 2 extra conditions to recover the unknown coefficients 𝐶𝑛,𝑚. These 

conditions can be obtained by substituting equation (3.1) in the given differential equation and using the 

collocation points𝑥𝑖 (2
𝑘−1𝑀 − 2), 𝑥𝑖 ′𝑠 are limit points of the sequence: {𝑥𝑖} = {

1

2
(1 + cos

(𝑖−1)𝜋

2𝑘−1𝑀−1
)}    𝑖 =

2.3, .. , which gives the system of  equations and combining these system of equations with the eqn.(3.2) to 

obtain 2𝑘−1𝑀 system of equations from which we can compute the values for the unknown coefficients  𝐶𝑛,𝑚. 

Same procedure is repeated for differential equations of higher order also. 

4. Test Problems 
Test Problem 4.1. Initially, consider the first order delay differential Equation of the form, 

                                                            
 

1 1
'( ) ( ) , 0 1

2 2 2

x x
y x e y y x x   

                                     (4.1) 

with the initial condition, 

                                                y(0) = 1.                                                                                                         (4.2) 

 It has the exact solution   .xy x e  

We assume, 
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1

0

( )
M

i j

j

y x c





, 

for fixed 1k 

2 3 2

1 2 3 4

2 2
( ) 2 2 2(1 ) [4 12 7] [ 4 24 39 17]

4 18
y x c c x c x x c x x x           

4 3 2

5

2 24 20 73 209
[ 21 ]

24 3 3 3 24
c x x x x      

2 3 2

2 3 4 5

2 2 73
'( ) 2 2 2[2 3] [ 12 48 39] [32 20 42 ]

18 24 3
y x c c x c x x c x x x            

 
Substituting these values of  y(x), y′(x)  in the given equation(4.1) , We have, 

2 3 2

2 3 4 5

2 2 73
2 2 2[2 3] [ 12 48 39] [32 20 42 ]

18 24 3
c c x c x x c x x x          

2 3 2

1 2 3 4

1 2 2
[{ [ 2 [ 2 2(1 )] [4( ) 12( ) 7] [ 4( ) 24( ) 39( ) 17]

2 2 4 2 2 18 2 2 2

x x x x x x x
e c c c c           

4 3

2

5

24( ) 20( ) 73( )
2 2092 2 2[ 21( ) ]}

24 3 3 2 3 24

x x x

x
c    

2 3 2

1 2 3 4

1 2 2
[ 2 2 2(1 ) [4 12 7] [ 4 24 39 17]

2 4 18
c c x c x x c x x x          

4 3 2

5

2 24 20 73 209
[ 21 ]

24 3 3 3 24
c x x x x    

                                                                     (4.3)                                      

 

Since, (0) 1y   ,  then we have, 

1 2 3 4 5

7 2 17 2 209 209
2 2 2 1

4 18 24 24
c c c c     

                                                           (4.4)

 

Collocating the equation (4.3) using the limit points of the sequence:
1

1 cos( 1 1)
{ (1 )}

2 (2 . 1)k

i

M





, 

Where,

  

1 2,3........i  at   1k   and 5M  ,then We get the following points, When,    

               

1 1

1 2

1 3

1 4

2 0.9845

3 0.9388

4 0.8658

5 0.7702

i x

i x

i x

i x

  

  

  

  

 Substituting these points in the equation (4.3), we get four algebraic 

systems of equations with the unknown coefficients , 1ic i  to 5 . Solving these five equations (4.3) and (4.4) 

using MATLAB, we get the value of 'ic s and then substituting in

1

0

( ) ,
M

i j

j

y x c




  

we get the approximate solution as, 

  4 3 20.2603 0.1499 0.6807 0.9927 0.9999.y x x x x x      

Test Problem 4.2. Next consider the second order Pantographic equation is of the form,                                         

                                               𝑦" =
3

4
𝑦(𝑥) − 𝑦 (

𝑥

2
) − 𝑥2  + 2  with  𝑦(0) = 0,   𝑦′ (0) = 0, 0 ≤ 𝑥 ≤ 1    (4.5) 

It has the exact solution: 

                                                                 𝑦(𝑥) = 𝑥2.                                                                                     (4.6) 

We assume, 

                            

1

0

( )
M

i j

j

y x c





 

 for a fixed 1k  .  
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2 3 2

1 2 3 4

2 2
( ) 2 2 2(1 ) [4 12 7] [ 4 24 39 17]

4 18
y x c c x c x x c x x x           

4 3 2

5

2 24 20 73 209
[ 21 ]

24 3 3 3 24
c x x x x    

 

  2 3 2

2 3 4 5

2 2 2 96 60 73
'( ) 0 2 2 1 [8 12] [ 12 48 39] [ 42 ]

4 18 24 3 3 3
y x c c x c x x c x x x            

  2

3 4 5

2
[ 24 48]

18 24

2
" 0 0 2 2 [96 40 42]xy x c c c x x       

 

or 

  2

3 4 5

4 2
( 2)

3 12

2
" 2 2 (48 20 21)y x c c c x xx     

 
Substituting these values of  y(x), y′(x) and y"(x) in the given equation(4.5), we have, 

  2

3 4 5

4 2
( 2)

3 12

2
" 2 2 (48 20 21)y x c c c x xx     

2 3 2

1 2 3 4

3 2 2
{[ 2 2 2(1 ) [4 12 7] [ 4 24 39 17]

4 4 18
c c x c x x c x x x         

4 3 2

5

2 24 20 73 209
[ 21 ]}

24 3 3 3 24
c x x x x    

2 3 2

1 2 3 4

2 2
{ 2 2 2(1 ) [4( ) 12( ) 7] [ 4( ) 24( ) 39( ) 17]

2 4 2 2 18 2 2 2

x x x x x x
c c c c          

4 3

2 2

5

24( ) 20( ) 73
2 2092 2 2[ 21( ) ]} 2

24 3 3 2 3 24

x x x
x

c x      
                                              (4.7)

 

Since (0) 0y   and '(0) 0y   implies, 

1 2 3 4 5

7 2 17 2 209 209
2 2 2 1

4 18 24 24
c c c c c                                                                 (4.8)                             

and  
2 3 2

2 3 4 5

2 2 73
2 2 2(2 3) ( 12 48 39) (32 20 42 ) 0

18 24 3
c c x c x x c x x x              (4.9)                             

 

And collocating the equation (4.7) using the limit points of the following sequence:
1

1 cos( 1 1)
{ (1 )}

2 (2 . 1)k

i

M




 ,

   

Where,
 1 2,3........i  at      1k      and 5M  ,then we get ,      

1 1

1 2

1 3

2 0.9845

3 0.9388

4 0.8658

i x

i x

i x

  

  

  

 

Substituting these collocating points in the equation (4.7), we get three algebraic systems of equations with the 

unknown coefficients , 1ic i  to 5 , using MATLAB solving these systems of equations (4.7, 4.8 & 4.9), 

we get the value of 1c to 5c
, 

then substituting these in 

1

0

( )
M

i j

j

y x c





 . 

Then we get the exact solution as 𝑦(𝑥) = 𝑥2. 

Test Problem 4.3. Thirdly consider the third order pantograph equation is of the form,                    

''' '' ' ' ''(2 ) ( ) ( ) cos(2 ) cos( ), (0) 1, (0) 0, (0) 1.
2 2

x x
y xy x y x y x x y y y        

            (4.10)         

It has the exact solution ).cos()( xxy    
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Using the procedure explained in section 3, we find the solution of the test problem 4.3 for different values of 

M and by increasing M values, we get more accuracy in the solution as shown in the table 1 and fig 1. 

Table 1. Comparison of Laguerre Wavelets solution (LWM) with the exact solution of the test problem 4.3. 

x Exact solution LWM 

(k=1, M=5) 

LWM 

(k=1, M=6) 

LWM 

(k=1, M=7) 

0.1 0.995004165278026    0.995048424874032 0.995002480114178 0.995004957055140 

0.2 0.980066577841242    0.980380017842200 0.980056330851874 0.980066699867935 

0.3 0.955336489125606    0.956257648835982 0.955310362733543 0.955335178937694 

0.4 0.921060994002885    0.922922044336683 0.921013810745427 0.921064184128300 

0.5 0.877582561890373    0.880591787375435 0.877509873375584 0.877582869530998 

0.6 0.825335614909678    0.829463317533201 0.825229251649921 0.825335635172135 

0.7 0.764842187284489    0.769710930940766 0.764683688168228 0.764844365565878 

0.8 0.696706709347165    0.701486780278748 0.696459506140211 0.696715025111881 

0.9 0.621609968270664    0.624920874777590 0.621211148421527 0.621612610337926 

1.0 0.540302305868140    0.540121080217562 0.540654716549813 0.540302458987522 

 
 

Fig.1. Comparison of Laguerre Wavelets solution (LWM, k=1, M=7) with the exact solution 

           of the test problem 4.3. 

Test Problem 4.4. Fourthly consider the singular initial value problem that is Lane-

Emden                                                                  equation is of the form, 

 𝑦′′ +
2

𝑥
𝑦′ + 𝑦 = 6 + 12𝑥 + 𝑥2 + 𝑥3;    0 < 𝑥 ≤ 1, 𝑦(0) = 0, 𝑦′(0) = 0                                    (4.11) 

It has the exact solution, 𝑦 = 𝑥2 + 𝑥3. Solving above equation using the method presented in the section 3 for 

the case corresponding to k=1, M=5. After performing some manipulations, the components of the vector C 

are given by using Laguerre wavelets:   𝑐10 =
−57√2

8
,     𝑐11 =

−45√2

16
,     𝑐12 =

7√2

4
,    𝑐13 =

−9√2

4
,     𝑐14 = 0, and 

consequently we get the solution as, 

   𝑦(𝑥) = 𝐶𝑇ψ(x) = 𝑥2 + 𝑥3, 
This is same as the exact solution. 

Test Problem 4.5. Lastly consider the singular nonlinear Lane-Emden equation is of the form,         

                          𝑦′′ +
2

𝑥
𝑦′ + 8 ey +4𝑒

𝑦

2 = 0.                                                                                             

(4.12) 

Subjected to initial conditions are,  

𝑦(0) = 0, 𝑦′(0) = 0, 

and its analytic solution is  𝑦 = −2ln (1 + x2). Using the procedure explained in section 3 we get the LWM 

solution of the test problem 4.5 and is presented in the Table 2 & Fig. 2.  

 

Table 2. Comparison of Laguerre Wavelets solution (LWM) with the exact solution of the test problem 4.5. 

 

X 
Exact solution 

Absolute Error by present 

method using Laguerre, Hermite 
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Fig.2. Comparison of Laguerre Wavelets solution (LWM, k=1, M=10) with the exact solution of the 

test           problem 4.5 

5. Conclusions 

The main goal of this paper is to develop an efficient and accurate method to solve certain differential equations 

those are linear or nonlinear or singular value problems. The Laguerre wavelets together with the collocation 

points are utilized to reduce the problem to the solution of linear or nonlinear algebraic equations. One of the 

main advantages of the developed algorithm is that it does not require any modification while switching from 

the linear case to the nonlinear case. Another one is that high accuracy approximate solutions are achieved 

using very small values of k and M. Illustrative examples are included to demonstrate the validity and 

applicability of the proposed method. According to the numerical findings are presented in the Tables and 

figures, we get more accurate results while increasing M. Computational work and numerical results explicitly 

reflect that the proposed method (LWM) is very user-friendly but extremely accurate. 
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